Advisory Database
  • Advisories
  • Dependency Scanning
  1. pypi
  2. ›
  3. tensorflow-gpu
  4. ›
  5. CVE-2022-21731

CVE-2022-21731: Type confusion leading to segfault in Tensorflow

February 10, 2022 (updated November 13, 2024)

The implementation of shape inference for ConcatV2 can be used to trigger a denial of service attack via a segfault caused by a type confusion:

import tensorflow as tf

@tf.function
def test():
y = tf.raw_ops.ConcatV2(
values=[[1,2,3],[4,5,6]],
axis = 0xb500005b)
return y

test()

The axis argument is translated into concat_dim in the ConcatShapeHelper helper function. Then, a value for min_rank is computed based on concat_dim. This is then used to validate that the values tensor has at least the required rank:

int64_t concat_dim;
if (concat_dim_t->dtype() == DT_INT32) {
concat_dim = static_cast<int64_t>(concat_dim_t->flat<int32>()(0));
} else {
concat_dim = concat_dim_t->flat<int64_t>()(0);
}

// Minimum required number of dimensions.
const int min_rank = concat_dim < 0 ? -concat_dim : concat_dim + 1;

// ...
ShapeHandle input = c->input(end_value_index - 1);
TF_RETURN_IF_ERROR(c->WithRankAtLeast(input, min_rank, &input));

However, WithRankAtLeast receives the lower bound as a 64-bits value and then compares it against the maximum 32-bits integer value that could be represented:

Status InferenceContext::WithRankAtLeast(ShapeHandle shape, int64_t rank,
ShapeHandle* out) {
if (rank > kint32max) {
return errors::InvalidArgument("Rank cannot exceed kint32max");
}
// ...
}

Due to the fact that min_rank is a 32-bits value and the value of axis, the rank argument is a negative value, so the error check is bypassed.

References

  • github.com/advisories/GHSA-m4hf-j54p-p353
  • github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2022-55.yaml
  • github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2022-110.yaml
  • github.com/tensorflow/tensorflow
  • github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/common_shape_fns.cc
  • github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/shape_inference.cc
  • github.com/tensorflow/tensorflow/commit/08d7b00c0a5a20926363849f611729f53f3ec022
  • github.com/tensorflow/tensorflow/security/advisories/GHSA-m4hf-j54p-p353
  • nvd.nist.gov/vuln/detail/CVE-2022-21731

Code Behaviors & Features

Detect and mitigate CVE-2022-21731 with GitLab Dependency Scanning

Secure your software supply chain by verifying that all open source dependencies used in your projects contain no disclosed vulnerabilities. Learn more about Dependency Scanning →

Affected versions

All versions before 2.5.3, all versions starting from 2.6.0 before 2.6.3, all versions starting from 2.7.0 before 2.7.1, version 2.7.0

Fixed versions

  • 2.5.3
  • 2.6.3
  • 2.7.1

Solution

Upgrade to versions 2.5.3, 2.6.3, 2.7.1 or above.

Impact 6.5 MEDIUM

CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

Learn more about CVSS

Weakness

  • CWE-754: Improper Check for Unusual or Exceptional Conditions
  • CWE-843: Access of Resource Using Incompatible Type ('Type Confusion')

Source file

pypi/tensorflow-gpu/CVE-2022-21731.yml

Spotted a mistake? Edit the file on GitLab.

  • Site Repo
  • About GitLab
  • Terms
  • Privacy Statement
  • Contact

Page generated Wed, 14 May 2025 12:15:33 +0000.